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Abstract

Recently, a semiempirical method for alloys based on equivalent crystal theory was

introduced (Phys. Rev. B45,943(1992)). The method successfully predicts the con-

centration dependence of the heat of formation and lattice parameter of binary alloys.

In this report, a study of the parameters of the method is presented, along with new

results for 7 Fe-Pd and -yFe-Ni alloys.
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Recently. a new method for calculating alloy properties was introduced by Bozzolo,

Ferrante and Smith (BFS)'. The method is based on the ideas of equivalent crystal theory

(ECT) for defect formation energies in elemental solids  and uses only pure metal and two

alloy properties as input data. In our previous work, we applied the method to the study

of the heat of formation as well as the concentration dependence of the lattice parameter

of several fcc binar y' alloys' ,3 . More recent applications of BFS deal with the study of

the energetics of hcc alloys  and theoretical modelling of the atomic force microscope for

bimetallic i,;: sample interactions'. Also, as a consequence of the ideas underlying the

foundai,ion of BFS, we were able to derive a new set of sum rules which allow for the direct

calcula6m) of bulk alloy properties from pure component properties'.

The simplicity of the method relies on the basic assumption that the energy of each

non-equivalent atom is described as a superposition of two separate contributions: a strain

energy that deals with the structural changes and a. chemical energy that takes into account

the changes in chemical composition. The calculation of the first term, the strain energy, is

a straightforward application of equivalent crystal theory for pure elements: it is computed

as if the neighbor, of a given atom were of the same atomic species. Thus, no informa-

tion for the alloy is needed except for neighbor locations. The calculation of the chemical

energy follows an ECT-like format with the introduction of two additional `perturbative'

parameters which mimick the interaction between atoms of different atomic species in the

overlap region and account for the changes in the electron density due to the presence of the

other atoiric species'. For binary alloys A-B, two such parameters are needed, ,AB and

-113.4. which are obtained from two experimental (or theoretical) alloy properties as input'.

Our previous work'-` only cited the application of BFS to several problems in order to
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verify its ability to predict properties of interest. We now give a more detailed discussion

concerning the properties of AAB and ABA and provide a set of values for general use.

In our previous workl,3 -5, DAB and ABA were determined by requiring that the pre-

dicted heats of solution in the dilute limit reproduced the experimental values. These

quantities were computed by making use of the cluster expansion method 7 which relates

properties of ordered compounds to those of disordered. We used it to predict the heat of

formation for disordered alloys. Although this scheme has been very successful in a large

number of applications8-10 , there is still some uncertainty regarding the truncation criteria

used in the expansion". This arbitrariness results in fluctuations of the predicted values

Of AAB and ABA. In some cases, the choice of a basis set on which the expansion is based

could lead to theoretical predictions that differ greatly from the experimental ones, even if

the physical quantity used as input (i.e., the heat of solution) is accurately reproduced. We

will give an example of this along with providing a set of parameters AAB and ABA , used

in our previous work"- s . and comment on the sensitivity of these parameters to the choice

of truncation scheme used in the cluster expansion.

Table 1 displays the pure element parameters needed for computing the strain and

chemical energy contributions 1.2 and Table 2 shows the parameters AAB and ABA for

several fcc binary alloys of the elements listed in Table 1, obtained by using the tetrahedron

approximations (i.e., all the clusters contain only nearest-neighbors). In all cases we used

the experimental heats of solution in the dilute limit as input, as this quantity is readily

available for most alloys 12 . Previous applications of this nearest-neighbor model to total

energy of bulk alloys can be found in the work of Connolly and Williams 8 , Terakura et a19

and Takizawa et a]". The ordered structures included in order to determine the many-body
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potentials in the cluster expansion are the fcc Llo and L1 2 structures. It was found that

this basis set gives good results for all the alloys listed in Table 2. In tables 3 and 4 we

display the corresponding parameters for bcc pure elements and binary alloys respectively.

To the fcc binary alloys discussed in Ref. 1 , we added two new cases: yFe-Pd and

yFe-Ni. The qualitative and quantitative agreement are good in both cases. Fig. 1 shows

the heat of formation_ as a function of composition for these two disordered alloys.

In table 5 we address the issue of stability of the parameters 0 with respect to the

choice of basis set of ordered compounds in the cluster expansion for a Cr-V alloy 4 . The

different choices are related to two possible ordered structures at 50 % composition (B2

and B32) and the corresponding pair multisite correlation functions ( b and b). We will

denote the cases studied as follows: (i) B32-6:includes the B32 ordered structure and the

6 correlation function (nearest-neighbor pair); (ii) B32 -1;3 ; B2-£2 and (iv) B2 + B32-6 + 6

(see Ref. 4 for details). 'We note that the ambiguity in the values of such parameters is a

consequence of the cluster expansion method and basis set chosen. Otherwise, we would

expect to be able to define a unique set of parameters A for different alloys if no approximate

schemes (for example. ab initio calculations) were involved in the theoretical determination

of the property of choice. Figure 2 displays some results for the heat of formation of the

Cr-V alloy (see Ref. 4 for a more detailed discussion). The several curves shown correspond

to different choices of the basis set chosen, although the same experimental input is used in

all cases. Obviously, the extreme difference in behavior of the heat of formation is purely

a consequence of the basis set used and not of the formalism presented here. Actually, the

parameters obtained for different basis sets are fairly stable: the parameters, play the role

of perturbations on the ECT parameter a (see table 1 and 3), giving a net change in a of
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Element Cohesive
Energy

Lattice
Constant

p I a A

Al 3.34 4.05 4 0.336 2.105 0.944
Cu 3.50 3.615 6 0.272 2.935 0.765
Ag 2.96 4.086 8 0.269 3.337 0.756
Au 3.78 4.078 10 0.236 4.339 0.663
Ni 4.435 3.524 6 0.270 3.015 0.759
Ir 6.94 3.84 10 0.235 4.408 0.661
Pd 3.94 3.89 8 0.237 3.612 0.666
Pt 5.85 3.92 10 0.237 4.535 0.666
Fe 4.27 3.57

1	
6	

1 0.279 1 2.963 1 0.784

Table 1: Experimental input: Cohesive energy (in eV), lattice parameter (in A). ECT
parameters: p. I (in A). a (in A -1 ) and A (in A) for several fcc elements.

the order of 0.01`X. Thus in spite of the ability to obtain quantitatively accurate predictions

in many cases it would be desirable to base the values of A on first-principles calculations.
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A-B I	 AAB BBA

Ag-AI 0.0475 -0.0499
Ag-Au -0.0333 -0.0227
Ag-Cu -0.0391 -0.0308
Ag-Pd -0.0451 -0.0178
Al-Au -0.0501 -0.0853
Al-Cu -0.0526 -0.0626
Al-Ni -0.0657 -0.0861
Au-Cu -0.0513 -0.0604
Au-Ni -0.0506 -0.0622
Au-Pd -0.0460 -0.0345
Cu-Fe 0.0495 0.0638
Cu-Ni -0.0163 0.0309
Cu-Pd -0.0431 -0.0495
Cu-Pt -0.0585 -0.0441
Fe-Ni -0.0106 -0.0320
Fe-Pd -0.0229 -0.0584
Ni-Pd -0.0396 -0.0478
Ni-Pt	 11 -0.0609 1 -0.0537

Table 2: Parameters AAB and -ABA for several fcc binary alloys.

Element Cohesive
Energy

Lattice
Constant

p 1 a A

NV 8.66 3.16 10 0.274 4.232 0.770

Ta 8.10 3.30 10 0.325 3.905 0.914
1\io 6.82 3.15 8 0.262 3.420 0.736
Nb 7.57 3.30 8 0.341 3.243 0.958
V 5.31 3.03 6 0.305 2.726 0.857
Cr 4.10 2.88 6 0.254 2.889 0.714
Fe 4.29 2.86 6 0.277 3.124 0.770
Li 1.63 3.491 2 0.589 1.049 1.66
Na 1.113 4.225 4 0.578 1.359 1.62
K 0.934 5.225 6 0.694 1.528 1.95
Rb 0.852 5.585 8 0.651 1.937 1.83

Cs 0.804 1	 6.045 1	 10 1 0.757 1 2.115 1	 2.13

Table 3: Experimental input: Cohesive energy (in eV). lattice parameter (in A). ECT

parameters: p. 1 (in A). o (in A -I ) and A (in A) for several bcc elements.

6



A- B I	 AAB ABA

Cr-Fe 0.0465 0.0285
Cr-Mo -0.02447 -0.0090
Cr-V -0.0246 -0.0232
Fe-V 0.0998 1 -0.07168

Table 4: Parameters AAB and ABA for several bcc binary alloys.

Basis AAB ABA

i -0.0242 -0.0228
ii -0.0246 -0.0232
iii -0.0232 -0.0222
it -0.0237 -0.0225

Table 5: Parameters A AB and ABA for different basis sets used in the cluster expansion
( see Ref. 4) for Cr-'V.
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